A conservative spectral method for the Boltzmann equation with anisotropic scattering and the grazing collisions limit

نویسندگان

  • Irene M. Gamba
  • Jeffrey R. Haack
چکیده

We present the formulation of a conservative spectral scheme for Boltzmann collision operators with anisotropic scattering mechanisms to model grazing collision limit regimes approximating the solution to the Landau equation in space homogeneous setting. The scheme is based on the conservative spectral method of Gamba and Tharkabhushanam [17, 18]. This formulation is derived from the weak form of the Boltzmann equation, which can represent the collisional term as a weighted convolution in Fourier space. Within this framework, we also study the rate of convergence of the Fourier transform for the Boltzmann collision operator in the grazing collisions limit to the Fourier transform for the Landau collision operator for a family of non-integrable angular scattering cross sections. We analytically show that the decay rate to equilibrium depends on the parameters associated with the collision cross section, and specifically study numerically the differences between the classical Rutherford scattering angular cross section, which has logarithmic error in approximating Landau, and an artificial cross section with a linear error.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Conservative Deterministic Spectral Boltzmann Solver near the grazing collisions limit

We present new results building on the conservative deterministic spectral method for the space homogeneous Boltzmann equation developed by Gamba and Tharkabhushaman. This approach is a two-step process that acts on the weak form of the Boltzmann equation, and uses the machinery of the Fourier transform to reformulate the collisional integral into a weighted convolution in Fourier space. A cons...

متن کامل

Spectral methods for the non cut-off Boltzmann equation and numerical grazing collision limit

In this paper we study the numerical passage from the spatially homogeneous Boltzmann equation without cut-off to the Fokker-Planck-Landau equation in the so-called grazing collision limit. To this aim we derive a Fourier spectral method for the non cut-off Boltzmann equation in the spirit of [21, 23]. We show that the kernel modes that define the spectral method have the correct grazing collis...

متن کامل

Inverse scattering problem for the Impulsive Schrodinger equation with a polynomial spectral dependence in the potential

In the present work, under some di¤erentiability conditions on the potential functions , we …rst reduce the inverse scattering problem (ISP) for the polynomial pencil of the Scroedinger equation to the corresponding ISP for the generalized matrix Scrödinger equation . Then ISP will be solved in analogy of the Marchenko method. We aim to establish an e¤ective algorithm for uniquely reconstructin...

متن کامل

A fast conservative spectral solver for the nonlinear Boltzmann collision operator

We present a conservative spectral method for the fully nonlinear Boltzmann collision operator based on the weighted convolution structure in Fourier space developed by Gamba and Tharkabhushnanam. This method can simulate a broad class of collisions, including both elastic and inelastic collisions as well as angularly dependent cross sections in which grazing collisions play a major role. The e...

متن کامل

Numerical simulation of a three-layered radiant porous heat exchanger including lattice Boltzmann simulation of fluid flow

This paper deals with the hydrodynamic and thermal analysis of a new type of porous heat exchanger (PHE). This system operates based on energy conversion between gas enthalpy and thermal radiation. The proposed PHE has one high temperature (HT) and two heat recovery (HR1 and HR2) sections. In HT section, the enthalpy of flowing high temperature gas flow that is converted to thermal radiation em...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Comput. Physics

دوره 270  شماره 

صفحات  -

تاریخ انتشار 2014